

Strategic Value Analysis:

Wind Resources Economics

Dora Yen-Nakafuji

PIER Renewables R&D
California Energy Commission

July 1, 2005 IEPR Workshop

Overview

- SVA Wind Results
 - How Much?
 - Where?
 - When?
- Methodology/Approach
 - How did we get there?
 - Feasibility & Priorities?
- Next Steps

Technical Wind Potential

	High Wind Speed			Low Wind Speed		
Height	Land Area	Capacity	AEP	Land Area	Capacity	AEP
m	Percent	MW	GWh	Percent	MW	GWh
30	0.2	4775	15478	1.2	30897	100144
50	0.4	9586	31070	2.2	56196	182144
70	0.6	14346	46500	3.3	85598	277441
100	0.8	21339	69164	4.9	126558	410199

Unique to SVA Approach

- Timeframe 2010 checkpoint and 2017 RPS goal
- Locational Evaluation identify transmission "hotspots" (weaknesses in the grid) using power flow analysis
- Temporal Evaluation economic feasibility and priority in terms of LCOE and transmission infrastructure costs and other criteria (non-energy benefits)

SVA Wind Results

Filters	HWS (MW)	LWS (MW)
Technical Potential	14,346	85,598
Economic Potential		
Locational	6,901	20,956
Temporal - 2010 requires		
mimimal transmission		
upgrades	2,473	
Temporal - 2017 requires		
major transmission		
infrastructure	3,438	304

Wind Resources Mapped to Hot Spots

Example:

Potential wind energy injection (MW injection) locations based on resource availability and benefit to grid

Transmission System Impact Ratios

- 19 counties identified for new wind HWS/LWS development
- 6 counties selected for detailed transmission analysis based on wind resource availability, proximity to hotspots, available transmission and economic feasibility
- 2 additional counties in the Tehachapi Resource Area

Selected Wind Locations

Locational Evaluation - Wind

	High Wind Speed	Low Wind Speed
Counties	(MW)	(MW)
Alameda	132	490
Solano	275	4,345
Riverside	1,416	3,785
San Bernardino	280	1,621
San Diego	756	2,709
Imperial	82	1,099
Tehachapi Area		
Kern	2,038	3,157
LA	1,922	3,750
Total	6,901	20,956

Economic Valuation

 Standardized LCOE by technology and year

- Estimated of specific interconnection requirements of each project
- Financial parameters consistent with those applied to the generator

Levelized Cost of Energy (LCOE) in 2004 current dollar

Economic & LCOE Comparisons

Temporal Evaluation

Overall Statewide Solutions

- Overlay renewable technical potential in problem areas
- Develop renewable economic potential
- Complete economic comparisons
 - Transmission & distribution (T&D)
 - Conventional generation
 - Renewables
- Compare environmental benefits associated with developing renewables
 - Improved emissions
 - Increase employment
 - Customer choice
 - Resource diversification

Next Steps - Integration

- Perform integrated analysis and determine optimal mix of renewable resources
 - All in-state renewable resources
 - Interstate generation potential
 - Regional transmission planning
 - WECC transmission plans
- Determine proper mix of conventional and renewable resources by incorporating power simulation modeling

Next Steps – Operations

- Match utility resource needs and generating type (base, intermediate, peaking) with renewable technology alternatives
- Incorporate production cost model to determine unit commitment needs and dispatch requirement for impact on operations (note: transmission power flows only look at a snapshot)
- Engage interaction between Commission, CPUC, utilities, regional study groups, CaISO and developers to address issues and ensure timely development and strategic expansion statewide
- Provide feedback using SVA methodology to statewide energy planning future transmission planning

Intermittency Analysis Group & SVA-Phase II

Summary

- Significant wind resource potential in CA
- Significant transmission infrastructure issues
- SVA provides near-term and long-term strategic approach for prioritizing CA wind development to meet RPS goals and plan transmission infrastructure
 - Prioritized transmission infrastructure and statewide planning perspective
 - Strategic repowering & development of new high speed wind resources
 - Identifies opportunities for low speed wind technologies, new wind turbine technologies, distributed wind generation (DG) & building integrated wind generation technologies

Contact Information

California Energy Commission PIER Renewables R&D

- Dora Yen-Nakafuji
- dyen@energy.state.ca.us

